

Correspondencias Fundición Gris

NORMA PAÍS/AÑO		1977	1990	1970	1969	1987	1985	1966	1969	1990	1984	1994	1994	1983 (Reap. 94)	1993	1988	1995	
EN 1563:1997		UK	UK	BELGIUM	DENMARK	FRANCE	GERMANY	NETHER- LANDS	ITALY	NORWAY	SWEDEN	USA	USA	USA	USA	INTER- NATIONA	JAPAN	
		BS1452	BS1452	NBN 830-	OS 11 301	NFA 32-	DIN 1691	NEN 6002-	UNI 5007	NS11 100	SS 1401	ASTM A48-	ASTM	ASTM	USA SAE	ISO 185	JIS G5501	
				01		101		Α				94a	A48M-94	A159-83	J431			
5	ÍMBOLO	NÚMERO																
Е	NGJL-100	ENJL 1010		100	FGG10	GG15		GG10		G10	SjG100	110,00	20				100	FC100
Е	NGJL-150	ENJL 1020	150	150	FGG15	GG20	FGL 150	GG15	GG15	G15	SjG150	115,00	25	150/175			150	FC150
Е	NGJL-200	ENJL 1030	220	200/220	FGG20	GG25	FGL 200	GG20	GG20	G20	SjG200	120,00	30/35	200/225			200	FC200
Е	NGJL-250	ENJL1040	260	250	FGG25	GG30	FGL 250	GG25	GG25	G25	SjG250	125,00	40	250/275			250	FC250
Е	NGJL-300	ENJL1050	300	300	FGG30	GG35	FGL 300	GG30	GG30	G30	SjG300	130,00	45/50	300/325			300	FC300

Especificaciones técnicas Fundición Gris según Norma Europea EN: 1561:1997

	Design	nación del ma	aterial	Resisténcia a la tracción Rm	Límite elástico elástico R _P 0,2	Intervalos de durezas	Alargamiento A	Resistencia a la comprensión σ	la cizalladura	Resistencia al doblado σ db	Modulo de elastici- dad <i>E</i> metalográfica	•
Si	mbólica	Numérica	Según la dureza	N/mm²	N/mm²	НВ	%	N/mm²	N/mm²	N/mm²	Kn/mm²	
EN	I-GJL-150	EN-JL1020	EN-JL-2020	150-250	98 a 165	125-205	0,8 a 0,3	600	170	250	78 a 103	Ferrita- Perlita
EN	I-GJL-200	EN-JL-1030	EN-JL-2030	200-300	130 a 195	150-230	0,8 a 0,3	720	230	290	88 a 113	Perlita
EN	I-GJL-250	EN-JL1040	EN-JL-2040	250-350	165 a 228	180-250	0,8 a 0,3	840	290	340	103 a 118	Perlita
EN	I-GJL-300	EN-JL1050	EN-JL-2050	300-400	195 a 260	200-275	0,8 a 0,3	960	345	390	108 a 137	Perlita
EN	I-GJL-350	EN-JL1060	EN-JL-2060	350-450	228 a 285	220-290	0,8 a 0,3	1080	400	490	123 a 143	Perlita

- La resistencia a la tracción se refiere al valor obtenido en probeta de ø30 en bruto de colada y que corresponde a un espesor de pared relevante de 15 mm.
- Para cada grado, la dureza Brinell disminuye al aumentar el espesor de pared
- Por acuerdo entre el fabricante y el comprador puede adoptarse un margen más estrecho de durezas en la posición acordada sobre la pieza, siempre y cuando éste no sea menos de 40 unidades de dureza Brinell
- 1 N/mm

2

equivale a 1 Mpa

- La designación de materiales se ajusta a la norma EN 1560
- Cualquiera que sea el método utilizado para obtener las piezas moldeadas, los grados se han establecido en función de las características mecánicas determinadas sobre probetas mecanizadas a partir de muestras coladas independientemente, en moldes de arena o de otro tipo con un coeficiente de difusión térmica comparable
- El módulo de elasticidad depende de la cantidad y forma del grafito así como de la carga